top of page

NACIMIENTO DE LA QUÍMICA 

EL FIN DE LA ALQUIMIA


El nuevo espíritu hizo acto de presencia en los trabajos de dos médicos contemporáneos, uno alemán, Georg Bauer (1494-1555), y otro suizo, Teophrastus Bombastus von Hohenheimm (1493-1591).


Bauer es más conocido como Agrícola, que en latín quiere decir campesino (lo mismo que 'Bauer' en alemán). Se interesó en la mineralogía por su posible conexión con los fármacos. De hecho, la conexión entre la medicina y los fármacos y la combinación médico-mineralogista fue un rasgo destacado en el desarrollo de la química durante los dos siglos y medio siguientes.

El libro de Agrícola De Re Metallica («Sobre la Metalurgia») se publicó en 1556, y en él se reúnen todos los conocimientos prácticos que podían recogerse entre los mineros de la época.

 

Este libro, escrito en un estilo claro y con excelentes ilustraciones de maquinaria para la minería, se popularizó rápidamente y hoy día aún permanece como un notable clásico de la ciencia

De Re Metallica, el más importante trabajo sobre tecnología química anterior a 1700, estableció la mineralogía como ciencia. (El libro más valioso sobre metalurgia y química aplicada anterior al de Agrícola fue el del monje Theophilus, posiblemente griego, que vivió hacia el año 1000 d. de C.)

 

En cuanto a von Hohenheim, es más conocido por su auto seudónimo Paracelso, que significa «mejor que Celso». Celso fue un romano que escribió sobre medicina, y cuyas obras habían sido recientemente impresas. Ambos fueron objeto de una desmedida y, en el caso de Paracelso, errónea idolatría.

 

Paracelso, como Avicena cinco siglos antes, representó un desplazamiento del centro de interés de la alquimia, el oro, hacia la medicina. Paracelso mantenía que el fin de la alquimia no era el descubrimiento de técnicas de transmutación, sino la preparación de medicamentos que curasen las enfermedades. En la antigüedad lo más frecuentemente usado para estos fines eran las preparaciones con plantas, pero Paracelso estaba sinceramente convencido de la eficacia de los minerales como fármacos.


Paracelso fue un alquimista de la vieja escuela, a pesar de su insistencia en contra de la transmutación. Aceptó los cuatro elementos de los griegos y los tres principios (mercurio, azufre y sal) de los árabes. Buscó incesantemente la piedra filosofal en su función de elixir de la vida, e incluso insistió en que la había encontrado. También, con más fundamento esta vez, obtuvo el metal cinc y con frecuencia se le considera su descubridor, pese a que el cinc, en forma de mineral o de aleación con cobre (latón), era conocido desde la antigüedad.
Paracelso siguió siendo una figura polémica durante medio siglo después de su muerte. Sus seguidores aumentaron el contenido místico de sus concepciones, y en algunos aspectos las redujeron a sortilegios sin sentido. A esta corrupción se unió las desventajas de un momento en el que la alquimia apuntaba cada vez más hacia una etapa de claridad y racionalidad.

 

El alquimista alemán Andreas Libau (aproximadamente 1540-1616), más conocido por el nombre latinizado de Libavius, publicó una Alquimia en 1597. Este libro era un resumen de los logros medievales en alquimia, y puede considerarse como el primer texto de química de nombre conocido, pues estaba escrito con claridad y sin misticismo. De hecho, atacó con saña las oscuras teorías de los que él llamaba «paracelsianos», si bien estaba de acuerdo con Paracelso en que la función principal de la alquimia era la de auxiliar de la medicina.


Libavius fue el primero en describir la preparación del ácido clorhídrico, tetracloruro de estaño y sulfato amónico. También describió la preparación del agua regia, una mezcla de ácidos nítrico y clorhídrico cuyo nombre viene de su capacidad para disolver el oro. Incluso sugirió que las sustancias minerales pueden reconocerse por la forma que adoptan los cristales originados al evaporarse sus soluciones.
Sin embargo, estaba convencido de que la transmutación era posible, y de que el descubrimiento de métodos para fabricar oro era un importante fin del estudio de la química.

 

En 1604, un alemán llamado Johann Tholde publicó un texto más especializado (no se sabe nada más sobre su autor). Atribuyó el libro a un monje alemán, Basil Valenine, pero es casi seguro que este nombre no es sino un seudónimo. El volumen, titulado La carroza triunfal del antimonio, trata sobre los usos médicos de este metal y sus derivados.


Más tarde, un químico alemán, Johann Rudolf Glauber (1604-68), descubrió un método para preparar ácido clorhídrico por medio de la acción del ácido sulfúrico sobre la sal común. En el proceso obtuvo un residuo, el sulfato sódico, que actualmente se sigue llamando «sal de Glauber».


Glauber se familiarizó con esta sustancia, la estudió intensivamente y advirtió su actividad laxante. La llamó «sal mirabile» («sal maravillosa») y la consideró como un curalotodo, casi el elixir de la vida. Glauber se dedicó a la fabricación de este compuesto, así como de otros que consideró de valor medicinal y que también resultaron ser de gran valor como modo de ganarse la vida. Si bien esta ocupación era menos espectacular que la fabricación de oro, resultó más útil y provechosa.


La realidad económica hablaba a gritos incluso para aquellos que se mostraban impenetrables al razonamiento científico. Había demasiado de útil y provechoso en el conocimiento de los minerales y las medicinas como para perder el tiempo en una interminable carrera de locos tras el oro.
De hecho, en el curso del siglo XVII la alquimia entró en franca decadencia, y en el XVIII se transformó en lo que hoy llamamos química.

 

NACIMIENTO DE LA QUÍMICA

 

A pesar del avance, el conocimiento químico quedó retrasado respecto a otras ramas de la ciencia.

 

La importancia de las mediciones cuantitativas y de la aplicación de técnicas matemáticas a la astronomía había sido reconocida desde muy antiguo. Una razón para ello es que los problemas astronómicos que ocupaban a los antiguos eran relativamente simples, y algunos de ellos podían abordarse bastante bien incluso con la geometría plana.

 

El científico italiano Galileo Galilei (1564-1642), que en los años 1590-99 estudió el comportamiento de los cuerpos durante su caída, protagonizó espectacularmente la aplicación de las matemáticas y las mediciones cuidadosas a la física.

 

Los resultados de su trabajo condujeron, casi un siglo después, a las importantes conclusiones del científico inglés Isaac Newton (1642-1727). 

 

En su libro Principia Mathematica, publicado en 1687, Newton introdujo sus tres leyes del movimiento, que durante más de dos siglos sirvieron como base a la ciencia de la mecánica.

 

En el mismo libro Newton presentó su teoría de la gravitación, que también durante más de dos siglos constituyó una explicación adecuada de las observaciones sobre el universo y que, dentro de los límites de nuestras observaciones personales y de las velocidades que podemos alcanzar, continúa siendo válida en la actualidad. 

 

En relación con esta teoría Newton utilizó el cálculo infinitesimal, una nueva y poderosa rama de las matemáticas que él mismo ideó.

 

Con Newton, la revolución científica alcanzó su clímax. Ya no quedaba ningún problema pendiente, ni de los griegos ni de la antigüedad en general. Europa Occidental los había superado ampliamente, y nunca más volvería a mirar hacia atrás.

 

Pero este cambio de la descripción meramente cualitativa a las cuidadosas medidas cuantitativas no se registró en la química hasta un siglo después del decisivo trabajo de Newton.

 

De hecho, Newton, mientras construía la estructura de la astronomía y la física con una belleza y una solidez que dejaron atónito al mundo de la ciencia, permanecía inmerso en la alquimia buscando ardientemente por toda Europa recetas para fabricar oro por transmutación.


Esta persistencia en el error no puede achacarse por completo a los químicos. Si fueron más tardos en adoptar las técnicas matemáticas cuantitativas de Galileo y Newton fue porque el material con el que trabajaban resultaba más difícil de presentar en una forma lo bastante simple como para ser sometido a un tratamiento matemático.

 

A pesar de todo, los químicos hacían progresos, y ya en la época de Galileo aparecen débiles indicios de la futura revolución química. Tales indicios surgen, por ejemplo, en los trabajos del médico flamenco Jean Baptiste Van Helmont (1577-1644). Cultivó un árbol en una cantidad determinada de tierra, añadiendo agua periódicamente y pesándolo con cuidado a medida que crecía. Desde el momento en que esperaba descubrir el origen de los tejidos vivientes formados por el árbol, estaba aplicando la medición a problemas de química y biología.


Hasta la época de Van Helmont, la única sustancia aérea conocida y estudiada era el aire mismo, que parecía lo suficientemente distinto de las otras sustancias como para servir de elemento a los griegos. En realidad, los alquimistas habían obtenido con frecuencia «aires» y «vapores» en sus experimentos, pero eran sustancias escurridizas, pesadas de estudiar y observar y fáciles de ignorar.

 

El misterio de estos vapores estaba implícito en el nombre que se dio a los líquidos fácilmente vaporizables: «espíritus», una palabra que originalmente significaba «suspiro» o «aire», pero que también tenía un sentido evidente de algo misterioso y hasta sobrenatural. Todavía hablamos de «espíritus» para ciertos alcoholes o para la trementina. El alcohol es, con mucho, el más antiguo y mejor conocido de los líquidos volátiles; tanto, que en inglés la palabra «spirits» ha terminado por aludir específicamente a los licores alcohólicos.

 

Van Helmont fue el primero en considerar y estudiar los vapores que él mismo producía. Observó que se parecían al aire en su apariencia física, pero no en todas sus propiedades. En particular, obtuvo los vapores de la madera al arder, que parecían aire, pero que no se comportaban como tal.

 

Para Van Helmont, estas sustancias parecidas al aire, sin volumen ni forma determinados, eran algo semejante al «chaos» griego: la materia original, informe y desordenada, a partir de la cual (según la mitología griega) fue creado el universo. Van Helmont aplicó a los vapores el nombre de «chaos», que pronunciado con la fonética flamenca se convierte en gas. Este término se aplica todavía a las sustancias parecidas al aire.

 

Van Helmont llamó al gas que obtuvo de la madera «gas silvestre» («gas de madera»). Era el que actualmente llamamos dióxido de carbono.

 

El estudio de los gases, la forma más sencilla de materia, fue el primero que se prestó a las técnicas de medición precisa: sirvió de camino al mundo de la química moderna.

 

LEY DE BOYLE

 

Hacia el final de la vida de Van Helmont, los gases -en particular el aire, por ser el gas más corriente- alcanzaron una nueva y decisiva importancia. El físico italiano Evangelista Torricelli (1608-47) logró probar, en 1643, que el aire ejercía presión. Demostró que el aire podía sostener una columna de mercurio de setenta centímetros de altura y con ello inventó el barómetro.

 

Los gases, de repente, perdieron su misterio. Eran materiales, poseían peso, como los líquidos y los sólidos más fácilmente estudiados. Se diferenciaban de ellos sobre todo en su densidad mucho más baja.

 

La presión ejercida por el peso de la atmósfera fue demostrada de modo espectacular por el físico alemán Otto von Guericke (1602-86). Inventó una bomba de aire con la que se podía extraer éste de un recipiente, de manera que la presión del aire en el exterior no llegaba a igualarse con la presión del aire interior.

 

En 1654, Guericke preparó dos semiesferas de metal que encajaban mediante un reborde engrasado. Después de unir las dos semiesferas y extraer el aire que contenían mediante una bomba, la presión del aire exterior mantenía las semiesferas unidas. Yuntas de caballos unidas a cada una de las dos semiesferas y fustigadas para que tirasen lo más posible en direcciones opuestas, no lograron separar las semiesferas. Sin embargo, en cuanto se permitió que el aire volviese a penetrar en las semiesferas, pudieron separarlas.

 

Este tipo de demostraciones despertaron gran interés por las propiedades del aire. Y excitaron en particular la curiosidad del químico irlandés Robert Boyle (1627-91), quien proyectó una bomba de aire más perfeccionada que la de Guericke. En vez de, por así decir, extraer el aire de un recipiente aspirándolo, probó el procedimiento opuesto de comprimirlo.

 

En sus experimentos, Boyle halló que el volumen de una muestra de aire variaba con la presión según una proporción inversa simple , y lo descubrió vertiendo mercurio gota a gota en un tubo muy largo, de construcción especial, y dejando una muestra de aire en el extremo corto, cerrado, que se ajustaba mediante una espita. Añadiendo más mercurio al extremo largo y abierto podía incrementar la presión del aire encerrado. Si añadía suficiente mercurio como para someter el aire a una presión doble (doble peso de mercurio), el volumen del aire encerrado se reducía a la mitad. Si la presión se triplicaba, el volumen se reducía a un tercio. Por otra parte, si se reducía la presión el aire se expandía. Esta relación en la que el volumen disminuía a medida que aumentaba la presión se publicó por vez primera en 1622, y todavía nos referimos a ella como la ley de Boyle.


Este fue el primer intento de aplicar mediciones exactas a los cambios en una sustancia de particular interés para los químicos.

 

La ley de Boyle, que estableció la relación de proporcionalidad inversa entre la presión y el volumen de un gas a temperatura constante, deriva del experimento ilustrado. El mercurio vertido en la rama larga del tubo empuja el aire encerrado hacia la rama corta. Doblando la altura de la columna de mercurio, la de aire se reduce a la mitad. La relación viene expresada en la curva de la parte superior, que es una sección de una rama de hipérbola

ROBERT BOYLE Y EDME MARIOTTE

Boyle no especificó que la temperatura debe mantenerse constante para que dicha ley sea válida. Probablemente lo realizó así, y supuso queLos experimentos de Boyle ofrecían un centro de atracción para el creciente número de atomistas. Como se ha dicho antes, el poema de Lucrecio, publicado en una edición impresa, había atraído la atención de los humanistas europeos hacia las opiniones griegas sobre el atomismo. Un filósofo francés, Pierre Gassendi (1592-1655), se convirtió como resultado de ello en un atomista convencido; y sus escritos impresionaron tanto a Boyle que, a raíz de ello, también éste se convirtió al atomismo.se daría por hecho. El físico francés Edme Mariotte (1630-1684), que descubrió independientemente la ley de Boyle hacia el año 1680, especificó que la temperatura debe mantenerse constante. Por esta razón, en la Europa continental se alude con frecuencia a la ley de Boyle como la ley de Mariotte.

 

Los experimentos de Boyle ofrecían un centro de atracción para el creciente número de atomistas. Como se ha dicho antes, el poema de Lucrecio, publicado en una edición impresa, había atraído la atención de los humanistas europeos hacia las opiniones griegas sobre el atomismo. Un filósofo francés, Pierre Gassendi (1592-1655), se convirtió como resultado de ello en un atomista convencido; y sus escritos impresionaron tanto a Boyle que, a raíz de ello, también éste se convirtió al atomismo.

 

Mientras la atención se siguió centrando en los líquidos y sólidos solamente, las pruebas del atomismo no fueron mayores en tiempo de Boyle que en el de Demócrito. Los líquidos y sólidos no pueden comprimirse más que en proporciones insignificantes. Si se componen de átomos, estos átomos deben de estar en contacto, y no pueden situarse más juntos de lo que están. Por lo tanto, es difícil argumentar que los líquidos y los sólidos tienen que estar compuestos de átomos, porque si estuviesen hechos de una sustancia continua sería también muy difícil comprimirlos. ¿Por qué entonces preocuparse por los átomos?
Sin embargo, el aire, como ya se había observado en los tiempos antiguos y como Boyle ponía ahora en claro espectacularmente, podía comprimirse con facilidad. ¿Cómo podía ocurrir eso, a menos que estuviese formado por átomos minúsculos separados por el espacio vacío? La compresión del aire significaría simplemente, desde este punto de vista, la supresión del espacio vacío en el volumen, colocando a los átomos en estrecho contacto.

 

Si se acepta esta opinión sobre los gases, es más fácil creer que también los líquidos y sólidos están compuestos de átomos. Por ejemplo, el agua se evapora. ¿Cómo podía ocurrir esto, a no ser que desapareciese en forma de partículas minúsculas? Y, ¿qué sería más simple, entonces, que suponer que pasa a vapor átomo a átomo? Si el agua se calienta, hierve, y el vapor se forma de modo visible. El vapor de agua tiene las propiedades físicas de una sustancia semejante al aire y, por tanto, es natural suponer que está compuesto de átomos. Pero, si el agua está compuesta de átomos en su forma gaseosa, ¿por qué no en su forma líquida, así como en su forma sólida de hielo? Y si esto es cierto con el agua, ¿por qué no para toda la materia?
Este tipo de argumentos resultaban impresionantes, y por primera vez desde que se habían imaginado los átomos, dos mil años antes, el atomismo comenzó a ganar numerosos adeptos. Entre ellos, por ejemplo, Newton.
No obstante, los átomos seguían siendo un concepto nebuloso. Nada podía decirse sobre ellos, excepto que si se aceptaba su existencia, era más fácil explicar el comportamiento de los gases. Tuvo que pasar otro siglo y medio antes de que el atomismo adquiriese un enfoque bien delineado.

LA NUEVA CONCEPCIÓN DE LOS ELEMENTOS


Los estudios de Boyle marcan el final de los términos «alquimia» y «alquimista». Boyle suprimió la primera sílaba del término en su libro El Químico Escéptico, publicado en 1661. Desde entonces, la ciencia fue la química, y los que trabajaban en este campo eran los químicos.


Boyle era «escéptico» porque ya no estaba dispuesto a aceptar ciegamente las antiguas conclusiones que se habían deducido de los primeros principios. A Boyle le desagradaban especialmente los antiguos intentos de identificar los elementos del universo por medio de meros razonamientos. En lugar de ello, definía los elementos de una forma real, práctica. Un elemento, tal como se había considerado siempre desde el tiempo de Tales, era una de las sustancias simples primarias de las cuales se componía el universo. Pero ahora cualquier supuesto elemento debería ser examinado con el fin de ver si era realmente simple. Si una sustancia podía descomponerse en sustancias más simples, no se trataba de un elemento, pero las sustancias más simples sí podían serlo, hasta el momento en que los químicos aprendiesen a descomponerlas en sustancias aún más sencillas.


Además, dos sustancias que fuesen sendos elementos podían unirse íntimamente para formar una tercera sustancia, llamada un compuesto, y en ese caso el compuesto debería poderse descomponer en los dos elementos originales.


El término «elemento», en este contexto, tiene sólo un significado práctico. Una sustancia como el cuarzo, por ejemplo, podía considerarse un elemento hasta el momento en que los químicos experimentales descubriesen el modo de convertirla en dos o más sustancias más simples todavía. En realidad, según esta concepción, ninguna sustancia podía ser nunca un elemento excepto en un sentido provisional, ya que nunca había la seguridad de que, al avanzar en los conocimientos, no fuese posible idear un procedimiento para descomponer un supuesto elemento en dos sustancias más simples.


Hasta la llegada del siglo XX no pudo definirse la naturaleza de los elementos en un sentido no provisional.


El solo hecho de que Boyle exigiese un enfoque experimental al definir los elementos (enfoque que se adoptó posteriormente), no significa que supiese lo que eran los diversos elementos. Podía haber resultado, después de todo, que el enfoque experimental demostrase que los elementos griegos, fuego, aire, agua y tierra, eran elementos.


Boyle estaba convencido, por ejemplo, de la validez del punto de vista alquimista de que los metales no eran elementos, y que un metal podía convertirse en otro. En 1689 pidió al gobierno británico que aboliese la ley contra la fabricación alquimista de oro (también ellos temían al trastorno de la economía), porque creía que formando oro de un metal básico, los químicos podrían ayudar a demostrar la teoría atómica de la materia.


Pero Boyle se equivocó en esto; los metales demostraron ser elementos. En efecto, nueve sustancias que reconocemos ahora como elementos había sido conocidas por los antiguos: los siete metales (oro, plata, cobre, hierro, estaño, plomo y mercurio) y dos no metales (carbono y azufre). Además, había cuatro sustancias reconocidas ahora como elementos, que habían llegado a ser familiares para los alquimistas medievales: arsénico, antimonio, bismuto y cinc.


El mismo Boyle estuvo a punto de ser el descubridor de un nuevo elemento. En 1680 preparó fósforo a partir de orina. Sin embargo, unos cinco o diez años antes, el hecho había sido conseguido por un químico alemán, Henning Brand (¿- aproximadamente 1692).

A Brand se le llama a veces «el último de los alquimistas», y realmente su descubrimiento tuvo lugar cuando estaba buscando la piedra filosofal, que pensaba hallaría (de entre todos los sitios) en la orina. Brand fue el primer hombre que descubrió un elemento que no se había conocido, en ninguna forma, antes del desarrollo de la ciencia moderna.

Thomas Savery y su máquina “El amigo del minero

   EL FLOJISTO

 

Los descubrimientos del siglo XVII relativos a la presión del aire y al fenómeno insólito que se podía llevar a cabo produciendo un vacío y dejando actuar a la presión del aire dieron importantes resultados. A varias personas se les ocurrió que podía producirse un vacío sin utilizar la bomba de aire.

 

Supongamos que se hierve agua y se llena una cámara con el vapor, enfriando después la cámara con agua fría. El vapor que hay dentro de la cámara se condensará en gotas de agua, y en su lugar se formará un vacío. Si una de las paredes de la cámara fuese móvil, la presión del aire exterior empujaría entonces la pared hacia dentro de la cámara.La pared movible podría empujarse «de nuevo hacia afuera, formando más vapor y permitiéndole entrar en la cámara; y podría volver a desplazarse hacia adentro si, una vez más, se condensase el vapor. Si imaginamos que la pared movible forma parte de un pistón, observaremos que el pistón se moverá hacia dentro y hacia fuera, y que este vaivén podría utilizarse, por ejemplo, para impulsar una bomba.El resultado de todo esto fue que, por vez primera, la humanidad ya no tendría que depender más de sus propios músculos ni de la fuerza animal. Nunca más habría de estar a expensas de la fuerza favorable o desfavorable del viento, ni de la energía localizada en algunos puntos del agua corriente.

 

Georg Ernest Stahl (1660-1734)

La máquina de bombeo de Newcomen, que funciona a presión atmosférica. El agua pulverizada en el interior del cilindro condensa el vapor, creado un vacío. El pistón desciende en el vado, para volver hasta arriba del émbolo por una nueva inyección de vapor

En su lugar disponía de una fuente de energía a la que podía recurrir en cualquier momento y en cualquier lugar con sólo hervir agua sobre un fuego de leña o de carbón. Este fue el factor decisivo que señaló el comienzo de la «Revolución Industrial».


El creciente interés despertado a partir de 1650 por la posibilidad de encontrar nuevas aplicaciones al fuego y, por medio de las máquinas de vapor, obligarle a realizar los trabajos duros de la tierra, llevó a los químicos a una nueva conciencia del fuego. ¿Por qué algunas cosas arden y otras no? ¿Cuál es la naturaleza de la combustión?

 

 

 

Según las antiguas concepciones griegas, todo lo que puede arder contiene dentro de sí el elemento fuego, que se libera bajo condiciones apropiadas. Las nociones alquímicas eran semejantes, salvo que se concebían los combustibles como algo que contenían el principio del «azufre» (no necesariamente el azufre real).


En 1669, un químico alemán, Johann Joachim Becher (1635-82), trató de racionalizar más esta concepción, introduciendo un nuevo nombre. Imaginó que los sólidos estaban compuestos por tres tipos de «tierra». Una de ellas la llamó «térra pinguis» («tierra crasa»), y la intuyó como el principio de la inflamabilidad.

Un seguidor de las doctrinas, más bien vagas, de Becher fue el químico y físico alemán Georg Ernest Stahl (1660-1734). Propuso un nombre aún más nuevo para el principio de la inflamabilidad, llamándole flogisto, de una palabra griega que significa «hacer arder». Desarrolló después un esquema -basado en el flogisto- que pudiera explicar la combustión.


Stahl mantenía que los objetos combustibles eran ricos en flogisto, y los procesos de combustión suponían la pérdida del mismo en el aire. Lo que quedaba tras la combustión no tenía flogisto y, por tanto, no podía seguir ardiendo. Así, la madera tenía flogisto, pero las cenizas no.


Además, Stahl sostenía que el enmohecimiento de los metales era análogo a la combustión de la madera, y afirmó que los metales contenían flogisto, pero no así cuando estaban enmohecidos (o «calcinados»). La idea era importante, porque permitió proponer una explicación razonable sobre la conversión de las menas minerales en metal, el primer gran descubrimiento químico del hombre civilizado. La explicación consistía en esto: una mena mineral, pobre en flogisto, se calienta con carbón vegetal, muy rico en flogisto. El flogisto pasa desde el carbón al mineral, es decir, el carbón vegetal rico en flogisto se transforma en cenizas pobres en flogisto, mientras que con el mineral ocurre precisamente lo contrario.


Stahl consideró que el aire resultaba útil en la combustión sólo de un modo indirecto. Servía únicamente como transportador, captando el flogisto según abandonaba la madera o el metal y transfiriéndolo a alguna otra cosa (si es que la había disponible).


La teoría de Stahl sobre el flogisto encontró oposición al principio, en particular la de Hermann Boerhaave (1668-1738), un físico holandés, quien argüía que la combustión ordinaria y el enmohecimiento no podían ser diferentes versiones del mismo fenómeno.


Está claro que en un caso hay presencia de llama y en el otro no. Pero para Stahl la explicación era que en la combustión de sustancias tales como la madera, el flogisto se libera tan rápidamente que su paso calienta los alrededores y se vuelve visible en forma de llama. En el enmohecimiento, la pérdida de flogisto es más lenta, y no aparece llama.


A pesar de la oposición de Boerhaave, la teoría del flogisto ganó popularidad a lo largo del siglo XVIII. En la década de los setenta era casi universalmente aceptada por los químicos, desde el momento en que parecía explicar tantas cosas y tan claramente.


Pero quedaba una dificultad que ni Stahl ni sus seguidores lograron explicar. Las sustancias más combustibles, como la madera, el papel y la grasa, parecían consumirse en gran parte al arder. El hollín o las cenizas restantes eran mucho más ligeros que la sustancia original, lo cual era de esperar, ya que el flogisto había abandonado la sustancia original. Sin embargo, cuando los metales se enmohecían, también perdían flogisto, de acuerdo con la teoría de Stahl, pero el metal enmohecido era más pesado que el original (un hecho que los alquimistas habían observado ya en 1490). ¿Podía el flogisto tener peso negativo, de modo que una sustancia al perderlo pesaba más que antes, como mantenían algunos químicos del siglo XVIII? En ese caso, ¿por qué la madera perdía peso al arder? ¿Había dos tipos de flogisto, uno con peso positivo y otro con peso negativo?


Este problema sin resolver no era tan serio en el siglo XVIII como nos parece hoy a nosotros. Acostumbrados como estamos a medir los fenómenos con precisión, cualquier cambio inexplicable en el peso nos daría que pensar. Pero los químicos del siglo XVIII aún no habían aceptado la importancia de las mediciones cuidadosas, y no les preocupaban tales cambios. Mientras la teoría del flogisto explicase los cambios de aspecto y las propiedades, cabía ignorar, pensaban ellos, las variaciones en el peso.

 

Es preciso señalar, sin embargo, que el cambio estudiado por Boyle no era un cambio químico. El aire, tanto si se comprime como si se expande, continúa siendo aire. Tal cambio en volumen es un cambio físico. El estudio de los cambios físicos de los compuestos químicos concierne a la química física. Ésta no tuvo existencia real hasta dos siglos después de la época de Boyle

 

LOS  GASES

Dióxido de carbono y nitrógeno


La explicación de los enrevesados cambios de peso durante la combustión había que encontrarla, naturalmente, en los gases que aparecían o desaparecían mientras se formaban los compuestos. Pese al paulatino desarrollo del conocimiento de los gases desde tiempos de Van Helmont, un siglo antes en la época de Stahl aún no se había intentado tomarlos en cuenta como no fuese para reparar en su existencia. Pensando en los cambios de peso durante la combustión, los investigadores solamente tenían ojos para los sólidos y los líquidos. Las cenizas eran más ligeras que la madera, pero, ¿qué ocurría con los vapores liberados por la materia ardiente? No se consideraban. La herrumbre era más pesada que el metal, pero, ¿había tomado la herrumbre algo del aire? No se consideraba.
Antes de poder subsanar estas deficiencias era preciso que los químicos se familiarizaran más con los gases. Había que vencer el miedo a una sustancia tan difícil de coger, confinar y estudiar.
El químico inglés
Stephen Hales (1667-1761) dio un paso en la dirección correcta, a principios del siglo XVIII, al recoger gases sobre el agua. Los vapores formados como resultado de una reacción química pudieron conducirse, a través de un tubo, al interior de un recipiente que se había colocado lleno de agua y boca abajo en una jofaina con agua. El gas burbujeaba dentro del recipiente, desplazando el agua y forzándola a través del fondo abierto. Al final, Hales obtuvo un recipiente del gas o gases formados en la reacción.
Hales mismo no distinguió entre los diferentes gases que preparó y confinó, ni tampoco estudió sus propiedades, pero el solo hecho de haber ideado una técnica sencilla para retenerlos era de la mayor importancia.
El químico escocés
Joseph Black (1728-99) dio otro importante paso adelante. La tesis que le mereció una graduación en medicina en 1754 trataba sobre un problema químico (era la época en que la medicina y la mineralogía estaban estrechamente interrelacionadas), y publicó sus resultados en 1756. Lo que hizo fue calentar fuertemente la piedra caliza (carbonato cálcico). Este carbonato se descompuso, liberando un gas y dejando cal (óxido de calcio) tras de sí. El gas liberado pudo recombinarse con el óxido de calcio para formar de nuevo carbonato cálcico. El gas (dióxido de carbono) era idéntico al «gas silvestre» de Van Helmont, pero Black lo llamó «aire fijado», porque cabía combinarlo («fijarlo») de tal manera que formase parte de una sustancia sólida.
Los descubrimientos de Black fueron importantes por varias razones. En primer lugar, mostró que el dióxido de carbono puede formarse calentando un mineral, lo mismo que quemando madera; de este modo se estableció una importante conexión entre los reinos animado e inanimado.
En segundo lugar, demostró que las sustancias gaseosas no sólo son liberadas por los sólidos y líquidos, sino que pueden combinarse con ellos para producir cambios químicos. Este descubrimiento quitó a los gases mucho de su misterio y los presentó más bien como una variedad de la materia que poseía propiedades en común (al menos químicamente) con los sólidos y líquidos más familiares.
Por otro lado, Black demostró que cuando el óxido de calcio se abandona en el aire, vuelve lentamente a carbonato cálcico. De esto dedujo (correctamente) que hay pequeñas cantidades de dióxido de carbono en la atmósfera. He aquí la primera indicación clara de que el aire no es una sustancia simple y que, por lo tanto, pese a la concepción griega, no es un elemento según la definición de Boyle. Consiste en una mezcla de por lo menos dos sustancias diferentes, el aire ordinario y el dióxido de carbono.
Estudiando el efecto del calor sobre el carbonato cálcico,
Black midió la pérdida de peso implicada. También midió la cantidad de carbonato cálcico que neutralizaba una determinada cantidad de ácido. Este fue un paso gigante hacia la aplicación de mediciones cuantitativas a los cambios químicos, un método de análisis que pronto iba a alcanzar su plena madurez con Lavoisier.
Estudiando las propiedades del dióxido de carbono, Black observó que una vela no podía arder en su seno. Una vela encendida en un recipiente cerrado lleno de aire ordinario termina por apagarse, y el aire que queda no puede volver a mantener una llama. Éste descubrimiento parece ciertamente razonable, puesto que la vela encendida ha formado dióxido de carbono. Pero cuando el dióxido de carbono del aire encerrado se absorbe mediante compuestos químicos, queda algo de aire sin absorber. Este aire que queda y que no tiene dióxido de carbono, tampoco puede mantener una llama.
Black pasó este problema a uno de sus alumnos, el químico escocés
Daniel Rutherford (1749-1819). Rutherford metió un ratón en un volumen cerrado de aire hasta que murió. Encendió luego una vela en el gas que quedaba, hasta que se apagó. Después encendió fósforo en lo que quedaba, hasta que el fósforo dejó de arder. A continuación pasó el aire a través de una sustancia capaz de absorber el dióxido de carbono. El aire restante era incapaz de mantener la combustión; un ratón no pudo vivir en él y una vela colocada en su seno se apagó.
Rutherford informó de este experimento en 1772. Puesto que tanto él como Black estaban convencidos de la validez de la teoría del flogisto, trataron de explicar sus resultados en términos de dicha teoría: a medida que el ratón respiraba y las velas y el fósforo ardían, el flogisto se liberaba y se unía al aire, junto con el dióxido de carbono formado. Al absorber más tarde el dióxido de carbono, el aire restante seguía conteniendo mucho flogisto, tanto, que estaba saturado de él; no podía aceptar más. Por eso los objetos no seguían ardiendo en él.
Por este razonamiento, Rutherford llamó al gas que había aislado «aire flogisticado». Hoy día lo llamamos nitrógeno, y concedemos a Rutherford el crédito de su descubrimiento.

 

El soplete, introducido en el laboratorio por el químico sueco Constedt (1722-1765), fue un instrumento clave de análisis durante más de un siglo, y se utiliza todavía. El aire soplado por el tubo aumenta y dirige el calor de la llama.

Hidrógeno y oxígeno


Otros dos químicos ingleses, ambos partidarios de la teoría del flogisto, avanzaron aún más en el estudio de los gases por esta época.
Uno de ellos fue
Henry Cavendish (1731-1810). Era un excéntrico acaudalado que investigó en diversos campos, pero que se guardaba para sí los resultados de su trabajo y pocas veces los publicaba. Afortunadamente, sí publicó los resultados de sus experiencias sobre los gases.
Cavendish estaba especialmente interesado en un gas que se formaba cuando los ácidos reaccionaban con ciertos metales. Este gas había sido aislado con anterioridad por
Boyle y Hales, y quizá por otros, pero Cavendish, en 1766, fue el primero en investigar sus propiedades sistemáticamente. Por eso se le atribuye por lo general el mérito de su descubrimiento. Dicho gas recibió más tarde el nombre de hidrógeno.
Cavendish fue el primero en medir el peso de volúmenes determinados de diferentes gases, es decir, determinó la densidad de cada gas. Averiguó que el hidrógeno es extraordinariamente ligero, con una densidad de sólo una catorceava parte la del aire (y hoy día sigue siendo el menos denso de los gases conocidos). Tenía una segunda propiedad extraña: a diferencia del dióxido de carbono y del mismo aire, era fácilmente inflamable. Cavendish, considerando su extrema ligereza e inflamabilidad, especuló con la posibilidad de que fuese el mismo flogisto aislado.
El segundo químico fue
Joseph Priestley (1733-1804), ministro unitario que estaba profundamente interesado, por afición, en la química. Hacia finales de 1760 se hizo cargo de una parroquia en Leeds, Inglaterra, junto a la que, casualmente, había una cervecería. La fermentación del grano produce dióxido de carbono, que Priestley podía así obtener en abundancia para sus experimentos.
Recogiendo dióxido de carbono sobre agua, observó que una parte se disolvía y daba al agua un agradable sabor ácido. Era lo que en la actualidad llamamos «seltz» o «agua de soda». Y como sólo se necesita añadir esencia y azúcar para producir bebidas gaseosas, Priestley puede considerarse como el padre de la moderna industria de refrescos.
Priestley empezó a estudiar otros gases a comienzos de la década 1770-79. En esa época sólo se conocían tres gases diferentes: el aire mismo, el dióxido de carbono de
Van Helmont y Black, y el hidrógeno de Cavendish. Rutherford añadiría el nitrógeno como cuarto gas. Priestley, por su parte, procedió a aislar y estudiar algunos otros gases.
Su experiencia con el dióxido de carbono le había enseñado que los gases pueden ser solubles en agua y, para no perderlos en sus experimentos, intentó recogerlos sobre mercurio. Por este método logró recoger y estudiar gases como el óxido nitroso, amoniaco, cloruro de hidrógeno y dióxido de azufre (para darles sus nombres actuales), todos los cuales son demasiado solubles en agua para resistir el paso a su través.
En 1774, el uso del mercurio en su trabajo con los gases dio lugar al descubrimiento más importante de Priestley. El mercurio, cuando se calienta en el aire, forma un «calcinado» de color rojo ladrillo (que ahora llamamos óxido de mercurio). Priestley puso algo de este calcinado en un tubo de ensayo y lo calentó con una lente que concentraba los rayos del sol sobre él. El calcinado se transformó de nuevo en mercurio, que aparecía como bolitas brillantes en la parte superior del tubo de ensayo. Además, la descomposición liberaba un gas de propiedades muy extrañas. Los combustibles ardían antes y con más brillo en este gas que en el aire. Un rescoldo de madera introducido en un recipiente que contuviese dicho gas ardía con llama.
Priestley trató de explicar este fenómeno recurriendo a la teoría del flogisto. Puesto que los objetos ardían tan fácilmente en este gas, tenían que ser capaces de liberar flogisto con extraordinaria facilidad. ¿Cómo podría ser eso, a menos que el gas fuese una muestra de aire de la que se hubiera extraído el flogisto, de tal modo que aceptaba un nuevo aporte con especial avidez? Así, Priestley llamó a este nuevo gas «aire desflogisticado». (Sin embargo, pocos años después fue rebautizado como oxígeno, nombre que aún conserva.)
Realmente, el «aire desflogisticado» de Priestley parecía ser el opuesto al «aire flogisticado» de Rutherford. Un ratón moría en este último, pero era particularmente activo y juguetón en el primero. Priestley probó a respirar algo de ese «aire desflogisticado», y se sintió «ligero y cómodo».
Pero tanto Rutherford como Priestley habían sido precedidos por un químico sueco,
Karl Wilhelm Scheele (1742-1786), uno de los químicos que llevaron a Suecia a la vanguardia de la ciencia en el siglo XVIII.
Uno de ellos,
George Brandt (1694-1730), estudió hacia 1730 un mineral azulado que parecía mena de cobre, pero que, para desesperación de los mineros, no daba cobre cuando se sometía al tratamiento habitual. Los mineros pensaban que era mineral embrujado por los espíritus de la tierra, a los que llamaban «kobolds» (gnomos). Brandt logró demostrar que el mineral no contenía cobre, sino un nuevo metal (que parecía hierro por sus propiedades químicas) al que llamó cobalto, en honor a los espíritus de la tierra.
En 1751,
Axel Fredric Cronstedt (1722-65) descubrió un metal muy semejante, el níquel; Johann Gottlieb Gahn (1745-1818) aisló el manganeso en 1774, y Peter Jacob Hjelm (1746-1813) aisló molibdeno en 1782.
El descubrimiento de estos nuevos elementos por los suecos demostró la avanzada mineralogía que él practicaba en aquella nación. Cronstedt, por ejemplo, introdujo el soplete en el estudio de los minerales (ver figura 6). Consistía éste en un tubo largo que se estrechaba hacia uno de los extremos y que, cuando se soplaba por el extremo ancho, producía un chorro de aire en el extremo apuntado. Este chorro, dirigido hacia la llama, incrementaba su calor.

EL TRIUNFO DE LA MEDIDA


Los numerosos e importantes descubrimientos hechos en relación con los gases tenían que ser reunidos en una teoría global, lo que ocurrió hacia finales del siglo XVIII. Su autor estaba en escena. Era el químico francés Antoine Laurent Lavoisier (1743-94).
Desde el principio de sus investigaciones químicas, Lavoisier reconoció la importancia de las mediciones precisas. Así, su primer trabajo importante, en 1764, trata sobre una investigación de la composición del yeso: lo calentó para extraer el agua que contenía, y midió luego la cantidad de agua liberada. Se unió así a los que, como Black y Cavendish, aplicaban la medición a los cambios químicos. Lavoisier, sin embargo, era más sistemático, y la utilizó como instrumento con el que derribar las antiguas teorías que, ya inservibles, no harían sino entorpecer el progreso de la química
.

Antoine Laurent Lavoisier y señora

Todavía había quienes, por ejemplo, aún en 1770 se aferraban a la vieja concepción griega de los elementos, y mantenían que la transmutación era posible, puesto que el agua se transformaba en tierra calentándola durante mucho tiempo. Esta suposición parecía razonable (incluso, en un principio, a Lavoisier), puesto que calentando agua durante varios días en un recipiente de cristal, se formaba un depósito sólido.
Lavoisier decidió examinar esta supuesta transmutación con algo más que una simple inspección ocular. Durante 101 días hirvió agua en un aparato que condensaba el vapor y lo devolvía al matraz, de manera que en el curso del experimento no se perdía sustancia alguna. Y, por supuesto, no olvidó la medida. Pesó el agua y el recipiente, antes y después del largo período de ebullición.
El sedimento sí apareció, pero el agua no cambió de peso durante la ebullición. De forma que el sedimento no pudo haberse formado a partir del agua. Sin embargo, el recipiente, una vez extraído el sedimento resultó que había perdido peso, una pérdida que era justamente el peso del sedimento. En otras palabras, el sedimento no era agua convertida en tierra, sino material del vidrio atacado por el agua caliente y precipitado en fragmentos sólidos. He aquí un ejemplo claro en el que la medida pudo conducir a la demostración de un hecho razonable, mientras que el testimonio de los ojos sólo llevaba a una conclusión falsa.
Lavoisier se interesó en la combustión, primero, porque éste era el gran problema de la química del siglo xviii, y segundo, porque uno de sus primeros triunfos fue un ensayo sobre la mejora de las técnicas del alumbrado público en 1760-69. Empezó en 1772, cuando se unió a otros químicos para comprar un diamante que calentó en un recipiente cerrado hasta que desapareció. La formación de dióxido de carbono fue la primera demostración clara de que el diamante era una forma de carbono y, por lo tanto, estaba estrechamente relacionado con el carbón, más que con ninguna otra cosa.
Calentó metales como el estaño y el plomo en recipientes cerrados con una cantidad limitada de aire. Ambos metales desarrollaron en su superficie una capa de «calcinado» hasta un momento determinado en que ésta no avanzaba más. Los partidarios de la teoría del flogisto dirían que el aire había absorbido del metal todo el flogisto que podía retener. Pero, como era bien sabido, el calcinado pesaba más que el propio metal, y sin embargo, cuando Lavoisier pesó todo el recipiente (metal, calcinado, aire, etc.) después del calentamiento, pesaron justamente lo mismo que antes de calentarlos.
De este resultado se deducía que si el metal había ganado peso al calcinarse parcialmente, entonces algo en el recipiente tenía que haber perdido una cantidad de peso equivalente.
Ese algo, al parecer, podría ser el aire, y en ese caso debería haber un vacío parcial en el recipiente. Efectivamente, cuando Lavoisier abrió el matraz, el aire se precipitó en él, tras lo cual comprobó que el matraz y su contenido habían ganado peso.
Lavoisier demostró de esta manera que la calcinación de un metal no era el resultado de la pérdida del misterioso flogisto, sino la ganancia de algo muy material: una parte del aire.
Ahora le era posible aventurar una nueva explicación sobre la formación de los metales a partir de sus menas; la mena era una combinación de metal y gas. Cuando se calentaba con carbón, éste tomaba el gas del metal, formando dióxido de carbono y dejando tras de sí el metal.
Así, mientras Stahl decía que el proceso de obtención de un metal por fusión del mineral correspondiente implicaba el paso de flogisto desde el carbón al mineral, Lavoisier decía que lo implicado en el proceso era el paso de gas desde el mineral al carbón. Pero estas dos explicaciones, aunque inversas, ¿no explicaban el mismo hecho? ¿Había alguna razón para preferir la explicación de Lavoisier a la de Stahl? Sí, la había, porque la teoría de Lavoisier sobre la transferencia de gas podía explicar los cambios de peso durante la combustión.
El calcinado era más pesado que el metal a partir del cual se formaba, a consecuencia del peso de la porción de aire que se incorporaba. La madera también ardía con adición de aire a su sustancia, pero no se observaba aumento de peso porque la nueva sustancia formada (dióxido de carbono) era a su vez un gas que se desvanecía en la atmósfera. Las cenizas que quedaban eran más ligeras que la madera original. Si se quemara madera en un espacio cerrado, los gases formados en el proceso quedarían dentro del sistema, y entonces podría demostrarse que las cenizas, más los vapores formados, más lo que quedaba de aire, mantendrían el peso original de la madera más el aire.
Lavoisier notó, en efecto, que si en el curso de los experimentos se tenían en cuenta todas las sustancias que tomaban parte en la reacción química y todos los productos formados, nunca habría un cambio de peso (o, utilizando el término más preciso de los físicos, un cambio de masa).
Por eso, Lavoisier mantuvo que la masa no se creaba ni se destruía, sino que simplemente cambiaba de unas sustancias a otras. Esta es la ley de conservación de la masa, que sirvió de piedra angular a la química del siglo XIX.
Las conclusiones a que llegó Lavoisier mediante el uso de la medida fueron de tal magnitud, como puede verse, que los químicos aceptaron sin reservas a partir de este momento el uso de este procedimiento.

LA COMBUSTIÓN


Lavoisier no estaba, empero, totalmente satisfecho. El aire se combinaba con los metales para formar un calcinado y con la madera para formar gases, pero no todo el aire se combinaba de esta manera, sino que sólo lo hacía aproximadamente una quinta parte. ¿Por qué ocurría de este modo?
Priestley, descubridor del «aire desflogisticado», visitó París en 1774 y describió a Lavoisier sus hallazgos. Lavoisier comprendió inmediatamente su significado, y en 1775 publicó sus puntos de vista.
El aire no es una sustancia simple, propuso, sino una mezcla de dos gases en una proporción de 1 a 4. Un quinto del aire era el «aire desflogisticado» de Priestley (si bien Lavoisier, desgraciadamente, olvidó conceder a Priestley el debido mérito). Era esta porción del aire, y sólo ésta, la que se combinaba con los materiales en combustión o en proceso de enmohecimiento; la que se transfería desde el mineral al carbón, la que era esencial para la vida.
Fue Lavoisier quien dio a este gas su nombre, oxígeno, derivado de los vocablos que en griego significan «productor de ácidos», pues Lavoisier tenía la idea de que el oxígeno era un compuesto necesario de todos los ácidos. En esto, como se demostró posteriormente, estaba equivocado.
Las cuatro quintas partes restantes del aire, que no podían mantener la combustión ni la vida (el aire «flogisticado» de Rutherford), constituían también un gas diferente. Lavoisier lo llamó «ázoe» (de la palabra griega que significa «sin vida»), pero posteriormente lo reemplazó el término nitrógeno. Esta palabra significa «que forma salitre», ya que se descubrió que el nitrógeno formaba parte de la sustancia de este mineral.
Lavoisier estaba convencido de que la vida se mantenía por algún proceso semejante a la combustión, puesto que lo que inspiramos es aire rico en oxígeno y pobre en dióxido de carbono, mientras que el que exhalamos está empobrecido en oxígeno y enriquecido en dióxido de carbono. Él y su colaborador, Pierre Simón de Laplace (1749-1827) -que más tarde se convertiría en un famoso astrónomo- intentaron medir el oxígeno tomado y el dióxido de carbono liberado por los animales. Los resultados fueron algo desconcertantes, pues parte del oxígeno inhalado no aparecía en el dióxido de carbono espirado.
En 1783 Cavendish aún estaba trabajando con su gas inflamable. Quemó una muestra de éste y estudió sus consecuencias, comprobando que los vapores producidos al arder se condensaban para formar un líquido que, al investigarlo, resultó ser nada más y nada menos que agua.
Este experimento fue de importancia crucial. En primer lugar, era otro duro golpe a la teoría griega de los elementos, porque demostró que el agua no era una sustancia simple, sino el producto de la combinación de dos gases.
Lavoisier, enterado del experimento, llamó al gas de Cavendish hidrógeno («productor de agua»), y dedujo que el hidrógeno ardía por combinación con el oxígeno, y que, por tanto, el agua era una combinación de hidrógeno y oxígeno. También consideró que la sustancia de los alimentos y de los tejidos vivos contenía una combinación de carbono e hidrógeno, de manera que cuando se inhalaba aire, el oxígeno se consumía formando no sólo dióxido de carbono a partir del carbono, sino también agua a partir del hidrógeno. Esta explicación aclaraba el hecho de que parte «del oxígeno no podía medirse en sus primeros experimentos sobre la respiración.
Las nuevas teorías de Lavoisier suponían una completa racionalización de la química. Todos los misteriosos «principios» habían caído con ella. En el futuro solamente interesarían a los químicos los materiales que pudieran pesarse o medirse.
Tras establecer esta base, Lavoisier comenzó a levantar la superestructura. Durante la década de 1780-89, en colaboración con otros tres químicos franceses, Louis Bernard Guyton de Morveau (1737-1816), Claude Louis Berthollet (1748-1822) y Antoine François de Fourcroy (1755-1808), elaboró un sistema lógico de nomenclatura que se publicó en 1787.
La química no volvería a ser un fárrago de nombres como en los días de la alquimia, cuando cada tratadista utilizaba su propio sistema y confundía a los demás.

 

Calentó mercurio en presencia de aire y observó que mientras aparecía un sólido rojo en la superficie del metal el volumen de aire disminuía. Después de varios días (alcanzado el equilibrio) comprobó que la quinta parte del aire original había desaparecido.

 

 

Lavoisier tenía claro que el sólido rojo era el producto de la combinación de mercurio y oxígeno (la parte del aire que mantenía la combustión y la respiración), por ello completó el experimento calentándolo con ayuda de una lupa. Efectivamante, el sólido se descompuso, apareciendo mercurio y la misma cantidad de aire que antes había desaparecido (realmente lo que apareción fue el oxígeno que se había combinado con el mercurio). Comprobó que el gas liberado (oxígeno) permitía la respiración de animales y reforzaba la combustión.

Los experimentos de Lavoisier fueron ilustrados en sus Elementos de Química con dibujos de Mme. Lavoisier

Se tendría en lo sucesivo un sistema reconocido que todos pudieran usar; un sistema basado sobre principios lógicos, de modo que cualquiera pudiese deducir los elementos de que estaba formado un compuesto a partir del nombre de éste. Por ejemplo, el óxido de calcio estaba hecho de calcio y oxígeno; el cloruro sódico, de sodio y cloro; el sulfuro de hidrógeno, de azufre e hidrógeno; etc.
Asimismo, se puso a punto un cuidadoso sistema de prefijos y sufijos que proporcionara alguna indicación acerca de las proporciones en las que estaban presentes los distintos elementos. Así, el dióxido de carbono contenía más oxígeno que el monóxido de carbono. Por otra parte, el clorato de potasio tenía más oxígeno que el clorito, mientras que el perclorato tenía aún más que el clorato, y el cloruro no tenía nada de oxígeno.
En 1789 Lavoisier publicó un libro (Tratado elemental de Química) que aportó al mundo una visión unificada del conocimiento químico en base a sus nuevas teorías y nomenclatura. Fue el primer texto moderno de química.
Entre otras cosas, el libro incluía una lista de todos los elementos conocidos hasta entonces (o, más bien, de todas las sustancias que Lavoisier consideró elementos según el criterio de Boyle, y que no pudo descomponer en otras más sencillas) (véase fig. 8). Es un mérito que hay que reconocer a Lavoisier el que de las 33 sustancias enumeradas solamente dos estaban completamente equivocadas. Estas dos eran la «luz» y el «calórico» que, como resultó evidente en las décadas posteriores a Lavoisier, no eran sustancias, sino formas de energía.
De las 31 restantes, algunas eran verdaderos elementos de acuerdo con los requisitos actuales. Éstos incluían sustancias -como el oro y el cobre- que se conocían desde antiguo, así como otras, como el oxígeno y el molibdeno, que se habían descubierto pocos años antes de la publicación del libro de Lavoisier. Ocho de las sustancias enumeradas (la cal y la magnesia, por ejemplo) no se volvieron a aceptar como elementos, puesto que ya en la época de Lavoisier se habían descompuesto en sustancias más sencillas. Pero, en cualquier caso, una de aquellas sustancias simples resultó ser un nuevo elemento.
Hubo alguna oposición ante los nuevos puntos de vista de Lavoisier (que se han mantenido hasta la actualidad), sobre todo por parte de ciertos partidarios acérrimos del flogisto, Priestley entre ellos. Pero otros aceptaron con entusiasmo la nueva química. Bergman, en Suecia, fue uno de éstos. En Alemania, el químico Martin Heinrich Klaproth (1743-1817) fue uno de los primeros conversos. Su aceptación de las teorías de Lavoisier fue importante, ya que al ser Stahl alemán, había cierta tendencia entre los germanos a adherirse al flogisto como gesto patriótico. (Klaproth alcanzó la fama después de haber descubierto algunos elementos: el uranio y el circonio, en 1789.)

 

Lista de elementos reunidos por Lavoisier, aparecida en sus Elementos de Química

El mismo año en que se publicó el libro de Lavoisier, triunfó la Revolución Francesa, degenerando rápidamente en los feroces excesos del Terror. Lavoisier, por desgracia, estaba relacionado con una organización de recaudadores de impuestos que los revolucionarios consideraban un instrumento de corrupción de la odiada monarquía. Ejecutaron en la guillotina a todos los funcionarios que lograron prender. Uno de ellos era Lavoisier.
Así, en 1794, uno de los más grandes químicos que jamás ha existido, fue muerto innecesaria e inútilmente en lo mejor de su vida. «Bastó un instante para cercenar esa cabeza, y quizá un siglo no baste para producir otra igual», dijo Joseph Lagrange, el insigne matemático. Lavoisier es universalmente recordado en la actualidad como «el padre de la química moderna».

bottom of page